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Abstract— Humans have the ability to anticipate what will
happen in their environment based on perceived information.
Their anticipation is often manifested as an externally ob-
servable behavioral reaction, which cues other people in the
environment that something bad might happen. As robots
become more prevalent in human spaces, robots can leverage
these visible anticipatory responses to assess whether their own
actions might be “a bad idea?” In this study, we delved into the
potential of human anticipatory reaction recognition to predict
outcomes. We conducted a user study wherein 30 participants
watched videos of action scenarios and were asked about
their anticipated outcome of the situation shown in each video
(“good” or “bad”). We collected video and audio data of the par-
ticipants reactions as they were watching these videos. We then
carefully analyzed the participants’ behavioral anticipatory
responses; this data was used to train machine learning models
to predict anticipated outcomes based on human observable
behavior. Reactions are multimodal, compound and diverse,
and we find significant differences in facial reactions. Model
performances are around 0.5-0.6 test accuracy, and increase
notably when nonreactive participants are excluded from the
dataset. We discuss the implications of these findings and future
work. This research offers insights into improving the safety
and efficiency of human-robot interactions, contributing to the
evolving field of robotics and human-robot collaboration.

Index Terms— robot error; social signals; anticipation; error
prevention; computer vision; human-AI collaboration

I. INTRODUCTION

There is a social aspect to estimating the wisdom of our
actions: when we are trying something new in the presence
of others, we might watch the reaction of bystanders to
judge whether our actions are risky. For example, if we see
someone squinting and frowning at us as we are walking
quickly across the sidewalk in winter, we might slow down,
in case they know the ground is icy or otherwise hazardous.
In doing so, we leverage the ability of other humans to
perceive likely harms, and their tendency to manifest their
perception as observable signals. This ability to sense and
adapt to social signals given off by others makes use of
the “wisdom of crowds”; people’s observable reactions form
a rich source of data that, if effectively harnessed, could
significantly enhance robotic systems’ efficiency and prevent
error.

In the field of Human-Robot Interaction (HRI), there is a
growing body of literature that explores human reactions to
better robots’ functionality [3, 16, 6, 8, 7, 30]. In this line
of research, many works have leveraged human reactions to
failure [29, 26, 17, 4], but few delve into the human ability
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Fig. 1: In the online user study, participants were shown videos
displaying a variety of scenarios featuring robots and humans.
Videos ended before the outcome was displayed, and participants
were asked about the anticipated outcome of each video.

to observe situations and anticipate outcomes. There is
untapped potential in using observable anticipatory behavior
to raise robots’ social awareness and prevent robot failure.

In this work, we collected a dataset of human anticipatory
reactions to videos displaying different human and robot sce-
narios. After observing the videos, participants were asked
to predict the unshown outcome of the situation (“you think
the situation ends...”, “well” or “poorly”). This anticipated
outcome – the anticipated resolution of the setting shown
in the video, based on the available context only – was then
mapped to the behavioral reactions. We analyzed this dataset
to understand anticipatory reactions and their potential in
HRI. First, we categorized non-verbal anticipatory behaviors
and extracted qualitative observations; we then explored the
use of machine learning to develop systems that can predict
errors before they happen. This research offers insights
into improving the safety and efficiency of human-robot
interactions, contributing to the evolving field of robotics
and human-robot collaboration.

II. RELATED WORK

Humans as sensors The idea of using humans as sensors
[21] of the environment, namely for error detection, means
grasping the ecological and behavioral patterns ingrained
in human reactions. Human reactions to robot error are
complex, diverse and multimodal. Common reactions include
verbalization [18], body motion [18, 31, 10], gaze [18, 1] and
facial expressions [18, 15, 27]. Mirnig et al. [22] analyzed a
large video corpus of humans interacting with failing robots
and found that social cues are common in reactions to robot



error, but the specific reactions can differ with the type
of error. Stiber and Huang [27] reported on the dynamic
evolution of human reactions to robot failures (e.g. eyebrow
raises evolving into verbal utterances).
Other works also extensively characterize human social cues
in response to robot error [18, 10]. However, these focus
only on reactions to error after the event, disregarding
the potential for leveraging anticipatory reactions. Notably,
Stiber et al. [27, 26] report participants exhibiting reactions
before error occurs, if the error seems predictable (i.e. if
the outcome is obvious). Previous works [12, 9] reported
how anticipation can improve human-robot interactions, but
this is focused on the robot anticipating human intent. What
we propose is analogous but complementary—the human
anticipates the outcome of robots’ actions, and the robot uses
this data to prevent erroneous behavior.
Models for error detection using social cues While the
use of social cues, namely human behavioral features, has
long been studied, the literature has largely focused on the
extrapolation of internal states (such as valence or arousal
[32], engagement [20] or comfortability [19]). Recent works,
however, have been exploring how to leverage humans’
ability to (visibly) react to their environment and improve
robotic systems [11, 5, 13, 8]. For example, Hwang et al.
[15] and Cui et al. [8] both used human facial expressions
as feedback input for robot task learning. Richter et al.
[25] used participants’ gaze and lip movement to improve
dialogue systems.
In the field of failure in HRI, many works have investigated
robot error prediction through human reactions. For example,
Bremers et al. [4] used a corpus of bystander human reactions
to failure to develop a Convolutional Neural Network (CNN)-
based error detection system. Stiber et al. [28] used facial
activation units (AUs) as input to a binary classifier to predict
the timing of robot failure. Similar work [29] also made use
of facial social cues to detect different types of error, using a
deep neural network with 3 hidden layers. Kontogiorgos et al.
[18] used a Recurrent Neural Network (RNN) and a Gradient
Booster Tree in a multi-modal dataset to classify different
error types from human reactions. Other approaches include
zero-shot learning from human behavior [24]. While not
directly in scope, there is extensive work on techniques for
action anticipation [34], including in human-robot interaction
and using social cues [14]. To the best of our knowledge, no
works have explored human anticipatory reactions as they
map to predicted outcomes.
Accordingly, we investigated human anticipatory reactions
through a controlled online user study employing video
stimuli. We wanted to analyze whether naturalistic reactions
exhibit identifiable patterns that can be utilized to develop
models for preventing robot errors. In sum, our contributions
are: 1) collecting a dataset of anticipatory naturalistic human
reactions to observed scenarios; 2) exploring the reaction
patterns through extraction of facial activation features across
different predicted outcomes, and 3) testing and benchmark-

ing different model architectures for outcome prediction.

III. STUDY DESIGN

To capture human reactions to anticipated outcomes, we
designed an online user study to collect visual responses
to videos displaying different scenarios. The protocol and
dataset are described below.

A. Stimulus dataset

We selected a set of 30 stimulus videos, which include
videos where humans and robots are featured, and there
is a build-up in action to an outcome that can be positive
or negative. Figure 1 shows a couple sequences from the
stimulus dataset, and the full list of stimulus videos are
available in an online repository 1. The short-length videos
(9.62± 2.77 s) were piloted and selected based on diversity
of outcomes (good or bad resolution) and predictability (e.g.
including bad outcomes that are predictably bad, as well as
surprisingly bad).

B. Experimental procedure

We conducted an online crowd-sourced study to collect
webcam reactions to stimulus videos from a global sample
recruited through Prolific, in line with previous work[4].
After giving informed consent, participants provided demo-
graphic information (age, gender, and race/ethnicity). Fol-
lowing this, participants were shown a series of scenarios
through short videos. The protocol included a “warm-up”
round of 3 videos, followed by the main round of data
collection (30 videos). Each stimulus video was shown twice.
First, a shorter version of the video was shown; the video
stops before resolution to the video action was reached (e.g.,
someone swinging from a rope, approaching a tree branch).
After watching this video, participants were asked “You think
this situation ends...” with the options “well” or “poorly”.
After this, participants were able watch a longer version of
the video, featuring the resolution of the video action. This
two-stage video stimulus design was set up after we found in
pilot studies that participants needed to be shown that both
good and bad outcomes were possible for the videos, to have
the full range of outcome anticipation response.

Participants would see each stimulus video while their
laptop or computer webcam recorded their facial responses.
Participants were not able to see their own image while the
stimulus videos played and the order of stimulus videos
was randomized. Compensation was provided at rate of
USD 15/hour for participants that took less than 60 min
to complete the study (watched all 30 videos). The full
procedure took around 30 minutes to complete. This data
was collected under Cornell University exempt IRB protocol
#1609006604.

1https://github.com/mteresaparreira/badidea.git
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C. Feature extraction

The reaction videos feature participants’ reactions to stim-
ulus videos, as recorded through the participant’s own web
cameras. The reaction videos were collected at 30 fps,
but vary in image resolution, lighting and camera angles
(Fig. 2). Following an analysis of the collected data, and
informed by prior work in the field of failure detection and
affect computation [29, 4], we explored the space of human
anticipatory reactions by extracting facial activation features
(i.e., facial expressions). We made use of Openface [2]. We
extracted only the features that regard gaze, head motion, and
facial unit activation (AUs), in a total of 49 features. After
qualitative analyses of the videos and model development
(see below), only AUs were used, as gaze and body pose
varied arbitrarily. Thus, the data used for training consisted
of 35 features (the full feature list can be found in the online
study repository1).

D. Model Development

To test the feasibility of automatically detecting antici-
pated outcomes, we made use of machine learning methods.

Problem Formulation Predicting anticipated outcomes
based on human reactions was formulated as a sequential
decision-making problem: at each time step t, the
environment is captured as a state variable st ∈ S,
and the model output is an outcome label ft ∈ F , where
F is a discrete variable that describes the participant’s
predicted outcome (and not the actual outcome of the
video): 0 if good, 1 if bad. In a real-use HRI system, this
binary classification would allow the robot to understand if
it should proceed or not with its current action.
Action Space The reactions were labeled according to out-
come predicted by the participants. In both good and bad
anticipated outcomes, we extracted 3 seconds of data (at 30
fps) preceding the video cut-off moment. This time horizon
was deemed to lead to better model performances.
Models tested We tested a wide range of deep learning
model architectures, namely Recurrent Neural Networks
(RNNs), which can capture temporal dependencies within
the data. Long Short Term Memory (LSTMs) are commonly
used, but tend to overfit. Alternatively, Gated Recurrent Units
(GRUs) were also tested, which are preferred in smaller
datasets, as well as Bidirectional LSTMs (BiLSTMs), which
are made up of two hidden-layer LSTMs. We also tested
a similar Deep Neural Network to that suggested by Stiber
et al. [29]—3 hidden layers, with 64, 128 and 64 units (multi-
layer DNN, ml-DNN). We used categorical cross-entropy as
the loss function on all models.
Datasets We trained the models on subsets and variations
of the data. We tested normalization, as well as Principal
Component Analysis (PCA) for feature reduction. In order to
evaluate the effect of data “cleaning”—i.e., removing nonre-
active participants, that is participants with no visible facial
reactions to the stimulus videos—we created a “short-list
dataset” based on qualitative observations of the participants’

TABLE I: Samples (frames) per dataset per anticipated outcome.

Train Dataset Good Bad Total
Full 41265 35909 77174
Short list 20000 17222 37222

reactions. We tested each model on both the full and the
short-list dataset.
Evaluation Metrics The models were evaluated based on
the macro averages of the following metrics: accuracy, F1-
score, precision and recall.
Model Training We performed hyperparameter tuning on
an 70-20-10 train-val-test split, with 5 cross-validation folds
with no overlapping participants. The best candidate model
of each type was picked based on macro-accuracy and F1-
score on the test set.

E. Participants

After exclusion due to video recording and feature extrac-
tion issues, our dataset is comprised of data from 29 partici-
pants. Ages range from 20-39 (27.10±4.98). 12 participants
identify as female, 14 as male and 3 who self-identified.
Racial/ethnical distribution includes 15 Caucasian/White or
Asian/White, 9 African/African American/Black, 4 His-
panic/Latino and 1 Asian/Asian American participants. Par-
ticipants took an average of 33m48s ± 9m38s to complete
the full data collection process.

The short-list dataset consisted of 14 participants, based
on the salience of reactions as described above.

IV. EXPLORING ANTICIPATORY REACTIONS

A. Dataset

The dataset is composed of participants’ visual responses
to the shorter stimulus videos. We mapped anticipatory
reactions to self-reported outcome prediction. Frames from
videos where participants deemed the outcome to end “well”
were labeled as 0 (anticipated good outcome). Frames
from videos where participants deemed the outcome to end
“poorly” were labeled as 1 (anticipated bad outcome).

We excluded all frames where feature prediction confi-
dence (from Openface) was lower than 70% (total of 2680
frames, 3.47% of the dataset). One participant was excluded
at this stage, as more than 50% of their videos were below
this threshold. The final and short-list datasets are shown on
Table I.

B. Describing Human Anticipatory Reactions

To better understand the space of human anticipatory be-
haviors as social signalling, we began by manually analyzing
the dataset, collecting observations on the reactions and
respective anticipated outcomes, based on behavioral analysis
and ethnomethodology. Below, we list our findings.

a) Outcomes anticipated as bad generate more salient
and diverse anticipatory reactions: Participants’ reactions
to outcomes anticipated as bad were generally more diverse
and salient (described in detail below), whereas anticipated



(a) Smile. (b) Eyes open, surprise.

(c) Concern. (d) Eyebrow raise.

(e) Mouth tilt, disapproval. (f) Disgust, surprise.

(g) Frown. (h) Subtle surprise.

(i) Nonreactive. (j) Yawn.

Fig. 2: Anticipatory behaviors displayed by participants. Partici-
pants provided explicit consent for reproduction.

good outcomes were preceded by mostly neutral facial
expressions.

b) Anticipatory reactions are diverse, compound, mul-
timodal, and evolving: Anticipatory behavior is rich in
facial expressions, head motion and body pose changes, as
well as multimodal, with vocal, verbal and non-verbal reac-
tions accompanying gestures and expressions. Importantly, it
evolves over time with compounding behaviors and changing
emotional displays. In Figure 2, we show examples of these
behaviors. Some examples include:

• chuckle into loud laughter;
• evolving surprise (eyebrows raise, into mouth opening,

into vocal utterance).
• surprise (eyes widen, eyebrows raise) into disgust (lip

corner depression, frowning);
• surprise into humor (smile, head shake, chuckle);
• confusion (eyes squint, lips purse, into shoulder shrug

and vocal utterances of disbelief)
• disgusted humor (head nods, into chuckle and smile)

• disapproval (head shake, lip tightening)
• smirks (humorous if accompanied by eyebrow raise,

disgusted if accompanied by eyebrow frown)
c) Reactions are person-dependent: Different partici-

pants behave differently – both in the diversity of behaviors
shown and in their magnitude. While some participants are
very visibly reactive (especially for anticipated bad out-
comes), others display very subtle (Figure 2h) to no reactions
at all (Figure 2i).

d) Datasets are noisy: Quantitative approaches to an-
alyzing and leveraging anticipatory reactions must take into
account displayed behaviors that are not part of these reac-
tions. Examples are yawning (Figure 2j), sneezing, hands
in face. Other noisy behaviors stemming from our data
collection process in particular include distraction (looking
away), camera device position changes (e.g. person moves
their laptop), among others. Time and task fatigue are also
a source of noise, as reactions tend to lose prominence
with evolving trials. Another factor to consider is outcome
anticipation mapping. While participants were asked to make
a judgment based on the situation shown in each video, pilot
studies indicated that participants might answer based on
meta-cognition—thinking about what the expected answer
might be, or based on past experience of watching or
participating in situations similar to that displayed in the
videos; hence, the reactions will not map to the intuitive
judgment given the context shown but rather a rationalized
outcome prediction.

C. Statistical Analysis of Behavioral Patterns

To understand the patterns of behavior in anticipatory
reactions, we analyzed the extracted features through sta-
tistical methods. We focused only on intensity of facial
unit activation features. This is because both gaze and pose
vary widely across participants (different camera angles,
positions), hence we did not want to foster sporadic find-
ings of statistical significance that do not pertain to actual
anticipatory behavior. The following analysis is based on 17
activation unit features.

We checked if different facial unit activations can identify
with specific anticipated outcomes by comparing their vari-
ances using Welsh t-test on the entire dataset of each facial
unit following previous work [29]. We corrected p-values
using Bonferroni. For all features but 5, the feature was
deemed a significant predictor of the anticipated outcome.
Table II shows the features and respective corrected p-values.
Figure 3 shows again the features deemed significant and
the mean of their normalized value. It can be seen that
for anticipated bad outcomes there is more intensity of
activation, which is consistent with observational findings
described in Section IV-B. The full results from the statistical
analysis can be found in the online repository.

D. Predicting Outcomes based on Anticipation

We benchmarked different model architectures through the
methods described in Section III. Table III describes the best-
performing models for each model type, both in the full



Fig. 3: Significant AUs, normalized mean value across the dataset
for each anticipated outcome class (light blue: good outcome; dark
blue: bad outcome). Standard deviation not shown as it is a large
value, consistent with observations of the wide reaction range.

dataset and in the short-list dataset. In all cases, the dataset
used consisted of frames taken at a 30fps frame rate, with a
3 second time window. These were deemed to be the dataset
criteria that lead to the best results. These performances are
discussed in Section V.

V. DISCUSSION

In this work, we explored the visual behavioral patterns
in anticipatory human reactions. We collected a dataset
of naturalistic anticipatory reactions from people, through
online and remote data collection. While this data collection
method presents a challenge for data handling, due to high
environmental diversity,it also enables us to collect data from
more participants, and under circumstances that might be
more ecologically valid for future applications.

In an implemented scenario, robots operating directly
or within shared spaces with humans would achieve more
seamless and efficient functioning by avoiding actions that

TABLE II: Facial Unit Activation features with significantly
different intensity across anticipated outcomes. AU – action unit.
p-values: * – p <0.05; *** — p <0.001.

Feature AU p-value
AU01 r Inner Brow Raiser ***
AU04 r Brow Lowerer ***
AU06 r Cheek Raiser ***
AU09 r Nose Wrinkler ***
AU10 r Upper Lip Raiser ***
AU12 r Lip Corner Puller ***
AU14 r Dimpler ***
AU17 r Chin Raiser ***
AU23 r Lip Tightener ***
AU25 r Lips Part ***
AU26 r Jaw Drop ***
AU45 r Blink *

are deemed as leading to poor outcomes. Based on past ex-
periences and domain expertise, humans are able to analyze
scenarios and predict outcomes; analogously, externalized
social signals such as anticipatory reactions to events can
be used as sensors to the environment for “preprocessing”
contextual information. Robots can and should make use of
this ability in human-robot interaction scenarios in order to
operate more efficiently, by avoiding actions anticipated as
erroneous (i.e. avoiding robot failure).

The collected reactions to the scenarios shown were first
analyzed statistically, revealing complex, compound, and di-
verse reactions, especially to outcomes anticipated as “bad”.
Stiber and Huang [27] had previously reported that reactions
are different in their salience and evolve with time when
humans are in the presence of failing robots. While these
variations unveil the richness of human reactions and our
ability to anticipate outcomes, they also pose a challenge for
automatic detection of the predicted outcomes, since patterns
in the data are not found trivially.

In our statistical analysis of facial units, we identified 12
action units with significantly different activation intensi-
ties when outcomes are predicted as good and bad. These
concern AUs related to mouth motion (e.g. mouth opening
in surprise reaction) and smiling/laughing (lips, cheeks), as
well as eyebrow motion (e.g. eyebrows frowning in confused
reaction). For all AUs deemed significantly different, the
intensity of activation was lower for outcomes anticipated
as “good” than for “bad” outcomes (Fig. 3). These results
are promising for the envisioned use case—where robots are
able to prevent actions deemed as leading to bad outcomes
by tracking (bystander) human reactions.

Following these analyses, we tested and benchmarked a
set of machine learning models, exploring the potential for a
use-case scenario of error prevention systems. Using a non-
overlapping participant approach for training and testing the
models, and in spite of extensive model development testing,
model performances are only slightly above chance for the
full dataset approach. Importantly, by manually curating
the dataset—removing nonreactive participants—we obtain
noteworthy performance improvements of up to 7 percentage
points for accuracy. These performances are not surprising
given the above-mentioned variability of reactions in the



TABLE III: Best performing models (test performance across 5 test folds, M ± SD for 7000 epochs). Grey rows represent models
trained on the short-list dataset. norm indicates dataset was normalized. SL: sequence length.

Model HyperP Accuracy Precision Recall F1-Score

GRU SL=10, Units=64, Dropout=0.0
Act: sigmoid , Opt: Adadelta 0.527± 0.045 0.556± 0.033 0.544± 0.025 0.511± 0.062

GRU
short-list, norm

SL=10, Units=128, Dropout=0.2
Act: sigmoid , Opt: Adadelta

0.583± 0.031 0.578± 0.020 0.574± 0.017 0.568± 0.021

LSTM SL=5, Units=128, Dropout=0.2
Act: sigmoid , Opt: Adadelta 0.544± 0.037 0.561± 0.018 0.557± 0.018 0.538± 0.039

LSTM
short-list

SL=10, Units=128, Dropout=0.0
Act: sigmoid , Opt: Adadelta

0.602± 0.039 0.588± 0.045 0.578± 0.039 0.575± 0.038

BiLSTM SL=10, Units=32, Dropout=0.6
Act: sigmoid , Opt: Adadelta 0.545± 0.046 0.568± 0.018 0.561± 0.02 0.537± 0.054

BiLSTM
short-list, norm

SL=10, Units=128, Dropout=0.6
Act: sigmoid , Opt: Adadelta

0.577± 0.046 0.565± 0.043 0.558± 0.036 0.556± 0.034

ml-DNN [29]
norm

Dropout=0.0
Act: sigmoid , Opt: SGD

0.512± 0.014 0.51± 0.019 0.509± 0.018 0.504± 0.017

ml-DNN [29]
short-list

Dropout=0.0
Act: sigmoid , Opt: SGD

0.586± 0.036 0.581± 0.029 0.577± 0.029 0.569± 0.033

dataset. Better performance should be achieved by increasing
the dataset size, to ensure that more samples of the different
reactions and reaction patterns are represented. Another
option would be to implement a single-user system, where
model generalization is conceptualized as the minimum
amount of data needed to generalize to other samples from
the same user (e.g. through a calibration round). In sum,
there is potential for using anticipatory reactions, but larger
datasets or different data collection methods (e.g. in-person
data collection) should be explored.

The growing body of literature that leverages human
reactions to failure for robot error detection [4, 18, 29, 23]
reveals the potential of exploring these cues in human-robot
interactions. Making use of anticipatory reactions would help
preventing robot error, thus allowing for better alignment
of robotic perception into the human-robot social sphere.
On a final note, the ethical use of such systems should be
considered and discussed. User consent and understanding
of the system is pivotal and system designers must uphold
privacy and security as priorities.

A. Limitations and Future Work

This work explores how anticipatory behavior could be
used to predict action outcomes and prevent error. This
is preliminary work that analyses these reactions, leaving
opportunities for future work that dives into implementing
these systems.

Regarding data collection, our method of online crowd-
sourcing provides a dataset of naturalistic bystander reac-
tions, but it comes with limitations. In this protocol, we map
reaction behavior to the humans’ predicted outcome. This
means that we cannot control for data balance in our ground-
truth labels, since they are generated by each participant as
they observe the stimulus videos. Nonetheless, we piloted the

dataset to prevent major data imbalances. This could also
be a source of lower model performance, as some of the
non-mixed participant folds might not be balanced. Another
factor to consider is that we cannot control how participants
choose to respond to their predicted outcome of the situation
shown. For example, one participant might see a video of
someone about to jump from a high building, anticipate a bad
outcome, but answer “good outcome” given that a video was
filmed and made available for that moment. This means that
the reactions will be ill-mapped to the predicted outcome.
This observation emerged from pilot testing and collecting
participants’ feedback. To prevent this, we explain at multiple
points of the study protocol that participants should answer
intuitively based only on what is shown in the video. We
additionally did not control for whether the participant was
familiar with any of the video stimuli, which might impact
their behavioral response.

In this work, we focus only on the visual modality of
the dataset, in spite of the multimodality of anticipatory
responses described in Section IV (e.g. laughter). This is
because the dataset contains background noise that could
lead to erroneous model training. Future work should make
use of multimodal data inputs. Other avenues for future
developments include collecting and exploring in-person
anticipation reactions, and making use of other machine
learning techniques for automatic outcome prediction, such
as complementing the system with zero-shot large language
models [33].

VI. CONCLUSION

This study has shed light on the potential of harness-
ing human anticipatory reaction recognition to inform the
predictive capabilities of robots in diverse environments.
Through our user study, we revealed the multifaceted na-



ture of human responses to various action scenarios, with
significant differences in facial expressions that serve as
valuable indicators of anticipated outcomes. Notably, the
exclusion of nonreactive participants led to improvements in
model performance, highlighting the importance of capturing
salient anticipatory responses for accurate prediction. By
leveraging human anticipatory reactions, robots can navigate
complex social landscapes with greater adaptability. Further
research endeavors hold the potential to refine predictive
models, explore novel modalities of reaction recognition, and
translate these insights into real-world applications across
diverse domains.
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